
The presence of the slit  in the body of the segment  somehow per turbs  the flow; however,  the per tu rba-  
tions on the shock front  damp out approximately 10-fold within the distances .., 3), (Xis the perturbat ion wave-  
length) [3]. In our  case  k is on the o r d e r  of the slit  width. The minimum distance within which a velocity jump 
occurs  in the experiments  descr ibed (for h / R  = 0.9) is x 1 = 12 mm, which is much g rea te r  than the sl i t  width 
of ~ 1 mm. The presence  of the slit, i f i t does  exer t  an influence, will exert  an influence which is more  often 
toward the diminution in the effect of cumulation. 

In conclusion, let us note tha tmore  special fo rms  of the hollow in the end face of the plug at the end of 
the shock-tube channel can resul t  in a still g r ea t e r  effect. In par t icular ,  the shape of a segment surface in 
which collapse of the t r ansve r se  wave would be real ized in the form of a cylinder or  of a cone with apex turned 
toward the bottom of the segment  can resul t  in magnification of the effect. 
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w 1. A free supersonic  off-design jet is often the incoming s t r eam or  background for  more  complex phenom- 
ena and p rocesses  (Fig. 1. where the dashes are contact discontinuities and the solid l ines are shocks). Hence, 
the simplicity of the analytical descript ion of such jets is an important  condition for  the successful  solution of 
problems of a higher  degree of difficulty than the jet itself~ Let us examine the following most  simple model of 
a f ree  jet: a one-dimensional  supersonic  s t r eam moves in a channel with permeable  walls. The escape velocity 
through the holes in the walls equals the local speed of sound~ By increas ing  the a r e a  of the holes,  we obtain 
a one-dimensional  s t r eam in the limit in which the velocity along the normal  to the cylindrical  surface equals 
the speed of sound. If the escape occurs  into a medium with counterpressure ,  then a shock will appear at some 
intermediate  secton of the channel. Its position is easily determined and corresponds  pract ical ly  exactly with 
the position of a central  shock in an underexpanded jet~ A simple improvement  of this rough model permits  
obtaining good qualitative resul ts  re la t ive to all the fundamental supersonic jet pa ramete r s  in the free expansion 
domain (domain I in Fig. 1). The flow in a channel ~4th variable c ross - sec t iona l  a r e a  and with permeable  walls 
is considered as the approximating s t ream.  In the limit, the role of the permeable  wall is played by one of the 
charac ter i s t ic  sur faces ,  which converge ~x4th the nozzle edge whose shape is determined to fou r th -o rde r  accu-  
racy relative to the angle of s t ream divergence.  

Let us form the mathematical ly  presented considerat ions by using the follox~4ng notation: x, y a re  the 
coordinates  in the plane of the axial s t r eam section; u, v are velocity project ions on the x, y axes; w is the 
absolute value of the velocity; $ is  the slope of the velocity vector  to the axis of symmet ry ;  M is the Mach 
number;  c~ is the Mach angle (sin a' = l /M);  k is the ratio of the specific heats; p is the p ressure ;  p is the 
density; h is the static heat content; h m is the total heat content; S is the entropy; ~b is the s t ream function; and 
the equation of state is assumed given in the form h(p, S). The pa rame te r s  on the jet boundary are denoted by 
the subscr ipt  H and on the nozzle exit by ao We consider  all the quantities dimensionless:  the coordinates are 
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Fig .  1 

r e f e r r e d  to the r ad ius  of the nozz le  exit  s ec t ion ,  the ve loc i t i e s  to the magn i tude  of the m a x i m u m  s t a t i o n a r y  

escape  in to  a vacuum w m = q ~ m ,  and the p r e s s u r e  to the s t agna t ion  p r e s s u r e  in the i n i t i a l  i s e n t r o p i e  flow. 
Under  such condi t ions  the Be rnou l l i  equat ion is  w r i t t e n  as w ~ + h = 1. 

Let us p e r f o r m  the s t a n d a r d  p a s s a g e  to the p lane  of the hodograph v a r i a b l e s  (u, v) in  the equat ions  of 
mot ion .  F o r  p r o b l e m s  with axial  s y m m e t r y  such an approach  i s  o r d i n a r i l y  u s e l e s s  for  i n v e s t i g a t i o n s  of exact  
f o r m u l a t i o n s  and me thods ,  but can  t u rn  out to be qui te  conven ien t  for  the c o n s t r u c t i o n  of approx ima te  so lu t ions .  
Let us go o v e r  to the v a r i a b l e s  ~, ~7 i n s t ead  of u,  v in equat ions  wr i t t en  in the hodograph p lane ,  by us ing  the 
r e l a t i o n s h i p s  

= w 2 = 1 - - h  = u ~" q- v~-; ~1 = v" = (1 --h)sin~-ff. 

It fol lows f r o m  the E u l e r  equa t ion  t r a n s f o r m e d  to the v a r i a b l e s  me n t i one d  that  a c h a r a c t e r i s t i c  flow func t ion  
q(~, ~7) ex i s t s  such that  

~% = g~'/2hp - -  ~ / 2 1 , z ~ - - ~ l ;  r = r  ~ - ~ l .  

The E u l e r  equa t ion  i s  s a t i s f i ed  i d e n t i c a l l y  for  any funct ion qo By us ing  the con t inu i ty  equa t ion ,  e x p r e s s i o n s  a re  
obta ined for  d e r i v a t i v e s  of the axial  coord ina te  x with r e s p e c t  to the v a r i a b l e s  ~, 77: 

= 1/'l-7" (~ -- ~1) [9~r -~ ] (r + qDn)]" q~n -~ 2 (~ -- ~1) 
x~ r .~p . . . . .  , x n = V~p ~%n (1.1) 

2 V 2n (~ - n) ((p~ -}- q~n) 2 y~2q (~ - ~1) ((p% q- (Pn) ' 

where  j = - h p p / h ~ .  E l i m i n a t i n g  x f r o m  (1.1) by c r o s s  d i f f e ren t i a t ion ,  we obta in  a s e c o n d - o r d e r  pa r t i a l  d i f f e r -  
en t ia l  equat ion of M o n g e - A m p e r e  type with the q u a s i l i n e a r  p a r t  

-. 2 
2 (~ - -  ~1) ~1 (%n --  q%~q%~) --  ~1 {2 [1 - -  (~ - -  ~1) J] (9~ -4- q%) --  9~} q%n --  

- -  2~1(2r --  q~n) %n - -  [(25 --  11) mn ~- 25m11%o~, - -  2 gJ(qh q- ~n) "~ - -  (1 - -  hi) mn (q~ ~- ran) = 0. (1.2) 

Th i s  equa t ion  i s  homogeneous  in  the d e s i r e d  funct ion  and all i t s  m e m b e r s  con ta in  d e r i v a t i v e s  in the f o r m  of 
products  of two p a r t i a l  d e r i v a t i v e s ,  where  the coef f i c ien t s  of these  p roduc t s  a re  po lynomia l s  of not  h i g h e r  than 
the second deg ree  in  77. Such a s t r u c t u r e  of the equat ion p e r m i t s  seek ing  the so lu t ion  as a power  s e r i e s  in the 
v a r i a b l e  ~7. It should be expected that such  an expans ion  is  effect ive when the flow has  p r i m a r i l y  an axial  d i -  
r ec t ion .  Let us i n t roduce  the cons tan t  p a r a m e t e r  e which c h a r a c t e r i z e s  the o r d e r  of the angle ,r in the mot ion  
doma in  u n d e r  c o n s i d e r a t i o n ,  and le t  us c o n s i d e r  ~ a s m a l l  quant i ty .  Ev iden t ly  VN e 2. Hence ,  we i n t roduce  the 
de fo rmed  v a r i a b l e ~  f r o m  the r e l a t i o n s h i p  77 = &2~ and we seek  the so lu t ion  in  the fo rm of the expans ion  

= s 
k = 0  

Equat ing  the e x p r e s s i o n  for  i d e n t i c a l  powers  of ~ in  0 .2 )  to ze ro ,  we obta in  r e c u r s i o n  r e l a t i ons  for  the coef-  
f i c i en t s  Ok. Since e takes  no p a r t  in  the s u b s e q u e n t  c o n s i d e r a t i o n s ,  l e t  us set  e = 1, i . e . ,  we r e t u r n  to the u n -  
de fo rmed  v a r i a b l e  V: 

(2~j - -  1)(%~ n - -  (t/11)qChn) = Fh--l; F-1 = 0 (k = 0, 1, 2 . . . ) .  

In the g e n e r a l  e a s e  F k _  1 can be e x p r e s s e d  fo r  k > 0 in  t e r m s  of the func t ion  qh with s m a l l e r  s u b s c r i p t s  (n < k). 
Let us c o n s i d e r  2~j ~ 1, i . e . ,  M # 1. Then  we f ind 

~0 = C~I~/2 ~ D, 
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w h e r e  C and D a r e  a r b i t r a r y  func t ions  f o r  the  v a r i a b l e  

q?l --~ [i/(2~] - -  i ) ]  ([4~(CC"" - -  C zf) -@, (5 -~ 2~])CC'-b 

+3]C~]qV3 + [(1 + 2~])D' + 4D"]q}, 

H e r e  the  p r i m e s  deno te  d e r i v a t i v e s  with r e s p e c t  to ~. In the a p p r o x i m a t i o n  q~ = ~P0 + e2~ol, the  f low i s  
d e s c r i b e d  by  the f o r m u l a s  

y~-/2 -- h , C  ~ ~l+ [hp(2~] - -  t)]{[4~(CC" - -  C '2) + 4(i + ~])CC' + (1.3) 

4- 3jC~-]~l: 4- 2 ( n '  5- 2~D")}. 

E v i d e n t l y ,  D ~ 0 i f  the f low c o n t a i n s  the axis  of s y m m e t r y .  By us ing  the so lu t i on  in  the  f o r m  (1.3), we g ive  a 
m a t h e m a t i c a l  d e s c r i p t i o n  of  the  two a b o v e - m e n t i o n e d  f r e e  j e t  m o d e l s .  

O n e - D i m e n s i o n a l  Mode l .  I t  c an  be  s e e n  tha t  the f i r s t  m e m b e r s  in  the  r i g h t  s i d e s  of (1.3) a g r e e  e x a c t l y  
with the  f o r m u l a s  of the o n e - d i m e n s i o n a l  t h e o r y  of s t a t i o n a r y  f lows in c h a n n e l s  with v a r i a b l e  c r o s s - s e c t i o n a l  
a r e a .  Only the a r b i t r a r y  funct ion  C(O,  r e l a t e d  to the  channel  s h a p e ,  i s  not u s u a l l y  i n t r o d u c e d .  F o r  the p u r -  
p o s e s  of  the p r o b l e m  u n d e r  c o n s i d e r a t i o n ,  such  a d e s c r i p t i o n  i s  m o r e  conven i en t .  T h u s ,  le t  

z = t - 1) Cd ; y'-/2 = h C% (1.4) 

The  b o u n d a r y  cond i t i ons  in the o n e - d i m e n s i o n a l  m o d e l  a r e  ~ = c~ on the c h a r a c t e r i s t i c  s u r f a c e  y = 1 (ol i s  the 
Mach angle) ,  i .eo,  7/= ( 1 - } } / M  2, and, t h e r e f o r e ,  C 2 = M f / 2 h p ( 1 - } ) .  F o r  an i d e a l  g a s  with cons t an t  s p e c i f i c  
h e a t s  M 2 = [ 2 / ( k - 1 ) ] ~ / ( 1 - } ) ~  Subs t i t u t i ng  C in the  f i r s t  of f o r m u l a s  (1.4) and i n t e g r a t i n g ,  ,we ob ta in  

x = M/ (k - -  1) - -  [(k + t ) / ( k - - l )  el l / ( k - - i ) / 2a rc tg (MV( t ;  - -  1)/2) 4- cmtst. (1.5) 

T h i s  f o r m u l a  can  be u sed  to d e s c r i b e  the Mach  n u m b e r  d i s t r i b u t i o n  a long the j e t  ax is  a l though i t  y i e l d s  an 
a s y m p t o t i c a l l y  f a l s e  r e s u l t  as  M ~  oo. 

The  s h o c k  in the s i m u l a t i n g  channe l  i s  se t  a t  tha t  s e c t i o n  w h e r e  the  c r i t i c a l  p r e s s u r e  Pl b e c o m e s  equa l  
to the  p r e s s u r e  in  the s u r r o u n d i n g  m e d i u m  PH f o r  e s c a p e  in to  a m e d i u m  with c o u n t e r p r e s s u r e ,  and i f  i t  i s  
a s s u m e d  tha t  the  p r e s s u r e s  in the  p r o v i s i o n a l  h o l e s  and i a  the channel  a r e  e q u a l i z e d ,  then the p r e s s u r e  1~ 
behind  the shock  m u s t  be  s e t  equa l  to  the p r e s s u r e  in the s u r r o u n d i n g  m e d i u m .  If (1.5) i s  used ,  then the s e c o n d  
a s s u m p t i o n  y i e l d s  a b e t t e r  a g r e e m e n t  with e x p e r i m e n t a l  r e s u l t s ,  but if  the e x a c t  law f o r  the Mach n u m b e r  d i s -  
t r i bu t ion  along the j e t  ax i s  i s  u sed  (for i n s t a n c e ,  as  ob ta ined  by the method  of c h a r a c t e r i s t i c s ) ,  then the f i r s t  
a s s u m p t i o n  r e s u l t s  in m o r e  e x a c t  va lue s  of  the c e n t r a l  s h o c k  c o o r d i n a t e  x s .  Hence ,  the  x s a r e  ob ta ined  s o m e -  
what  l e s s  t r u e .  U n d e r  the  cond i t ion  P2 = PH, the x s t u rn  out to be g r e a t e r  than the  e x p e r i m e n t a l  f o r  e x a c t  Mix)~ 
The m o s t  e x a c t  v a l u e s  of  x s a r e  ob ta ined  i f  the a p p r o k i m a t e  f o r m u l a  (1,5} i s  u s e d  ~4th the cond i t ion  Pl = PH �9 
Mutua l  c a n c e l l a t i o n  of  the e r r o r s  a p p a r e n t l y  o c c u r s  h e r e ,  F o r  g a s e s  with cons t an t  s p e c i f i c  h e a t s ,  we ob ta in  
an equa t ion  fo r  the  Mach  n u m b e r  M d i r e c t l y  in f ron t  of  the shock  f ron t  f r o m  the ad i aba t i c  cond i t ion  and the 
f o r m u l a  f o r  the p r e s s u r e  behind a n o r m a l  shock  

�9 !kt(k--l) 
k -- t ( -) 2 :~Ig i := i or 2. 

Pc ( 2k __ ) 1 ]~-1 ") 
k--1 

The s h o c k  c o o r d i n a t e  x s i s  d e t e r m i n e d  by m e a n s  of  the M found. 

S e c o n d - A p p r o x i m a t i o n  Mode l .  L e t  us  u s e  the c o m p l e t e  f o r m u l a s  (1.3) to d e s c r i b e  th i s  m o d e l .  The  i m a g -  
i n a r y  p e r m e a b l e  s u r f a c e  bounding  the  channe l  i s  a c h a r a c t e r i s t i c .  The  n o r m a l  v e l o c i t y  c o m p o n e n t  a long i t  
equa l s  the  l o c a l  s p e e d  of  sound.  L e t  us  u s e  the  equa t ion  of the c h a r a c t e r i s t i c s  in the  f o r m  

dy/dx = tg (0 - -~ ) ;  (1.6) 
d(} cos 2 c~ do~ sin ~ �9 sin 0 dx == O. 

(k-- i) /2-- '  s i n f c z ,  , cos(~--~)  g 

Since  ez ~. ~, then h - ~2 and,  t h e r e f o r e ,  h i s  a s m a l l  quan t i t y  w h o s e  s q u a r e s  cart be n e g l e c t e d ,  i . e . ,  in such  a 
f o r m u l a t i o n  we d e a l  with the h y p e r s o n i c  a p p r o x i m a t i o n .  Subs t i tu t ing  x, y in  the  f o r m  of  (1.3) and r e t a i n i n g  the 
f i r s t  two m e m b e r s  of the  e x p a n s i o n  in h, we obta in  the so lu t ion  in p a r a m e t r i c  f o r m  a f t e r  t ed ious  c o m p u t a t i o n s :  
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where ,y = 1 / ( k - l ) ;  the subscript 0 denotes the ini t ia l  parmT~eters fo r  the character ist ic  converging to the noz- 
zle edge; the parameter fl remains undetermined in the problem formulat ion under consideration and can be 
used to sat isfy an additional requirement .  Formulas  (lo7) descr ibe  the pa rame te r  field in the domain of f ree  
jet expansion and are in good agreement  with computations by the method of cha rac te r i s t i c s  f o r a  suitable se lec -  
tion of ft. The second of the formulas  yields the distribution of h (or the Mach numbers) along the jet axis. In 
con t r a s t  to (1.5) i t  has the c o r r e c t  asymptotic as h - -  0 (M ~ ~).. 

w 2. Stream models  simulating the flow in the f ree  je t -expansion domain,  independent of counterpressure  
and the presence  of an obstacle, were examined above. The flow in all the remaining sections of the jet is 
essent ial ly  determined by the eounte rpressure  and, in the case of r e s t r i c t ed  escape into domains adjoining an 
obstacle,  also by the position and shape of the obstacle.  In par t icular ,  these factors  influence the wave cha r -  
acter is t ics  in the neighborhood of the branch point of the shocks (the point C in Fig. 1). Later ,  it will be im-  
portant  to have sufficiently simple computat ional  relat ionships character iz ing the mutual influence of the pa- 
r amete r s  at the ver t ices  of the angular zones converging at a triple point (Fig. 2). 

The analysis of the tr iple shock configurations can be reduced to solving a sufficiently complex t r ans -  
cendental equation in the general  case [1]. Local utilization of such a procedure ,  especial ly as a boundary 
condition, often is fraught with g rea t  difficulties. It is possible to const ruct  an explicit solution in the neighbor-  
hood of a triple point in a hypersonic  approximation. Writing this solution analytically is simple if  we limit 
ourselves to a quadratic expansion in the two pa ramete r s  1/M and (k - 1), where M is the f r ee s t r eam Mach 
number.  

If three shock-front  genera to r s  converge at one point, then one par t  of the f r ees t r eam undergoes a single 
compress ion on the shock front  and the other  passes  through two shocks. The resul tant  effect of these actions 
is charac te r ized  by identical magnifications of the p re s su re s .  When all the waves have a finite intensity, the 
wave in the s t r eam with single compress ion  will be s t ronger  near  the normal  shock. This is the wave N in 
Fig. 2. The following notation are  used in Fig. 2: S is the incident shock, R is the reflected shock, N is the 
strong shock, and T is the contact discontinuity. 

The conservat ion laws yield the following system of equations in the neighborhood of the triple point: 

tg6~ = P(M, pJp);  tg51 = P(M, pJp); 

tg 62 = P (M~, pJp . ) ;  M 2 = R (M, pJp) ,  (2.1) 

where 6 is the angle of s t ream deflection at the shock front,  and the subscr ipts  1, 2, and 3 cor respond to the 
domain numbers  in Fig. 2. The functions P and R can be considered known if the equation of state of the gas 
is given. In the case of an ideal ga s with constant specific heats these fUnctions are 
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\ / 2kM ~ )it2 
: - i  , l  ; 

P (M, z) = ~ + k~t~-- / z k - - I  
Z ~_L. ; - - - -r -  - -  

' k ~ - I  

w- k + t ) ~ ~i--12 ,~i-" / I~-;Z-T z + t (z2-- t) 

R(M, z) = ~(~+ V:-i/k+ ~] 

The following conditions a re  sa t i s f ied  on the contact  discontinuity:  

(2.2) 

P ~=Pa ;  5 8 - - 8 z + 6 ~ , - - 0 .  (2.3) 

Since one of the shocks is  o rd inar i ly  s t rong,  and a lmos t  no rmal ,  then a logical  s implif icat ion of the 
computat ional  re la t ions  is  l inear izat ion with r e spec t  to a t r ip le  configurat ion with one normal  shock [2, 3]. 

If the shock N i s  no rm a l ,  then the p a r a m e t e r s  in domain 3 a re  de te rmined  independently: 63 = 0, p i p  is  
a known function of M and k, when the equation of s ta te  of the gas  is given. F o r  an ideal gas  

P3/P = [2k/(k + l)]M ~ - -  (k - - t ) t ( k  t). 

In this case  condition (2.3) can be rewr i t t en  as follows: 

--5,  & 80 = 0; (2.4) 

p l t p =  (p3,'p)pllp,.. (2.5) 

Substituting the appropr ia te  expres s ions  fo r  the angles of  s t r e a m  deflection on the shock f ronts  into (2.4), 
we obtain 

avctgP(M, p jp )  --  arctgP(Mz, P,-/Pl) "~ O. 

In combinat ion ~4th the l as t  re la t ionship  in the s y s t e m  (2.1) and condition (205), ~his express ion  yields a t r a n -  
s c e n d e n t a l e q u a t i o n f o r t h e p r e s s u r e p t  between the f r m t s  of the bi furcated shocks S and R in the genera l  case  
(see Fig.  2). F o r  an ideal gas with constant  specif ic  heats  the equation will be  a lgebra ic  and in the fo rm 

6 

,<,, o. 
77~0 

For  high numbers  M its approx imate  solution can be found as a polynomial  in powers  of 1,/M: 

Pz/P2 =- a + b/M + elM 2. (2.7) 

Retaining quanti t ies  up to second o rde r  in the expansions of the coeff icients  k n, we obtain af ter  s imple  manip-  
ulations 

(a,,+ ' .  o, (2.8  
~ 0  

where the coeff icients  a n and c n depend only on the ra t io  of the specif ic  heats .  Equation (2.8) i s  obtained af ter  
reduction of the in te rmedia te  re la t ion  by (pi/p2) 2, which e l imina tes  the second root Pi/P2 = 0 of (2.6). Substitu- 
ring (2.7) into (2.8), we again d i sca rd  h i g h e r - o r d e r  t e r m s  and col lect  the r e s t  in powers  of 1 /M.  Equating the 
coeff icients  of powers  of 1 /M to zero in o r d e r  to find the a,  b, c in (2.7), we find the following re la t ionships :  

Z a#t ~ - l - ~ O ;  b--O; c ~ - -  

F o r  the sake of s impl ic i ty ,  we seek  the finite re la t ionships  a and c in the f o r m  of power - l aw expansions in the 
quantity ( k -  1) and re ta in  the f i r s t  th ree  m e m b e r s .  Consequently,  we find 
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a = 0,25(k - -  i)  - -  0;5 (k - -  i)~'; c ---- [4 + 2(k - -  i )  --7(k - -  l)~]/2(k - -  t). (2.9) 

We a s s u m e  that  the  ang le  63 in  the  j e t  t r i p l e  shock  c o n f i g u r a t i o n  i s  s m a l l  (the shock  N i s  a l m o s t  n o r m a l )  
and the f l0w p a r a m e t e r s  be tween  the s h o c k  f r o n t s  d i f f e r  s l i g h t l y  f r o m  the c o r r e s p o n d i n g  p a r a m e t e r s  in a 
c o n f i g u r a t i o n  with one n o r m a l  shock ;  then 

Pl = Plo + hp,; p~. = p2o + hp~; M t = M,o q- AMI; 

G = G + AG; ~tl = G ' +  AG(G0 = 610 = G). 

Le t  us  i n t r o d u c e  the  fo l lowing  no ta t ion  fo r  the  d e r i v a t i v e s  o f  the  func t ion  (2.2): 

t ) I ( M ,  z) = Op ~ p (z + i - -  ~I~) =k+i  
(,+kM~---)t, 2k M~_~_k--})' 

p 2 ( M , z ) = o p  ( i , i 0.5 0.5 ) 
"~z : P  z ~ t  ~ l + k M 2 - - z  k - - t  2k M2__z _ k ~ i  ; 

~+k+i  k+----i 

We find to  f i r s t - o r d e r  a c c u r a c y  the  fo l lowing  f r o m  the s e c o n d  condi t ion  in  (203): 

(2.10) 

Apl/p = 76, (2.11) 

w h e r e  3' i s  a func t ion  of M and k d e t e r m i n e d  f r o m  an a n a l y s i s  of  a t r i p l e  c o n f i g u r a t i o n  wi th  one n o r m a l  c o m -  
p r e s s i o n  shock :  

(2.12) 

P l ,  P~., R2 a r e  c a l c u l a t e d  by m e a n s  of  (2.10) b y  s u b s t i t u t i n g  the a p p r o p r i a t e  M and z ,  I t  i s  p o s s i b l e  to p r o c e e d  
s u b s t a n t i a l l y  t oward  l e s s e r  v a l u e s  of  M i f  the l i n e a r  t e r m  in 1/M i s  r e t a i n e d  in  (207) and the c o e f f i c i e n t s  a ,  b ,  
and c a r e  d e t e r m i n e d  by  s a m p l i n g  b y  a p p r o x i m a t i n g  the  r e s u l t s  of e x a c t  compu ta t i ons~  The  fo l lowing d e p e n -  
d e n c e s  a r e  r e c o m m e n d e d :  

a = --0.0175 & 0,3793(k - -  t) - -  0.1727(k - -  t)-~; 

b = 1.2382--1.2579(k - -  i)  q- 0.38t3(k - -  t)a; 

c = --0,4044 " 0.2830(k - -  1) ~ 0.0324(k - -  t)  2. 

If Pl/P2 i s  d e t e r m i n e d  by (2~ then a s i m p l e  d e p e n d e n c e  can  be  ob t a ined  f o r  y .  A f t e r  s u b s t i t u t i n g  the  
e x p r e s s i o n s  fo r  the q u a n t i t i e s  in the r i g h t  s i d e  of  (2.12), we c a r r y  out  an e x p a n s i o n  in 1 /M and r e t a i n  the f i r s t  
t h r e e  t e r m s .  C o n s e q u e n t l y ,  we ob t a in  a r e l a t i o n s h i p  ana logous  to (207) fo r  the quan t i ty  y / M  2. I t  h e n c e  fo l lows  
tha t  

y . = A  - - B M  if- CM 2, 

w h e r e  A,  B, C depend  on ly  on k~ T h e s e  c o e f f i c i e n t s  a r e  a p p r o x i m a t e d  wel l  by  

A = -- t .7901 -:- t3.284t(k - -  1) - -  t 3 . 2 7 0 2 ( k -  I)~; 
B = 1.6318 - -  i0.3203(k - -  1) if- 9.8089(k - -  1):; 

C = 0.13t5 + 2.3768(k - -  i) - -  1.6327(k - -  1) ~. 

The  r e s u l t s  of compu t ing  an a r b i t r a r y  t r i p l e  shock  c o n f i g u r a t i o n  by  m e a n s  of the a p p r o x i m a t e  me thod  
e l u c i d a t e d  a g r e e  s a t i s f a c t o r i l y  with the r e s u l t s  of an e x a c t  c o m p u t a t i o n  f o r  v a l u e s  of  63 up to 10-12 ~ . The  
d i s c r e p a n c y  in  the r e l a t i v e  p r e s s u r e s  i s  l e s s  than 8% fo r  M > 2 ~ 

A p p l i c a t i o n  of  the  a p p r o x i m a t e  d e p e n d e n c e s  p r e s e n t e d  r e d u c e s  the c o m p u t a t i o n  of  the  p a r a m e t e r s  in 
t r i p l e  shock  c o n f i g u r a t i o n s  to the execu t ion  of  e l e m e n t a r y  c a l c u l a t i o n s .  
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w 3o Phenomena in the neighborhood of the jet boundary,  near  the hanging shock front  on both sides, and 
in the shock bifurcation zone are of a quite definite nonuniform character~ The following method, approved by 
numerous compar isons  with the resul ts  of computations and the data of experiments in a broad range of initial 
pa rame te r s  [4], can be recommended for  an approximate analytical descr ipt ion of the flows in these domains.  

Let us a~sume that an n - p a r a m e t e r  family of c u r v e s f ( x ,  Y, al, az . . . .  , a n) = 0 is known such that a 
curve of this family can be selected for any escape mode, which approximates the jet boundary well enough, 
i .e. ,  the question of finding the boundary reduces  to determining n values of the pa r ame te r s  a i for specific 
escape conditions. If the jet  boundary is simulated by a solid wall to be graphic,  then the hanging shock can 
be treated as the bow wave originating in the supersonic flow around a concave surface.  The higher the Mach 
number  in this s t ream,  the c lose r  does such a wave approach the s t reamlined surface.  On this basis ,  certain 
authors used the l imit  hypersonic  approximation: it was assumed that the hanging shock coincides with the 
jet boundary. For  finite, but la rge  Mach numbers  ahead of the hanging shock, its genera tor  differs slightly in 
shape f rom the line mapping the boundary and can be obtained geometr ica l ly  f rom it  by a relat ively small  de- 
formation.  Such a deformation can approximately be ca r r i ed  out analytically because of a change in the pa ram-  
eters  in the s t ructura l  dependence governing the shape of the jet boundary, i .e. ,  the problem of defining the 
shape of the hanging shock reduces to selecting a specific curve f rom the same n - p a r a m e t e r  f a m i l y f ( x ,  y, b 1, 
b 2 . . . . .  bn) = 0. Here the free pa r ame te r s  of the family are  denoted by b i ( i=1 ,2 ,  . . . .  n) in o r d e r t o  sepa-  
rate the second selection procedure  f rom the f i rs t .  The number 2n equals the number of conditions which are 
successful ly  formulated sufficiently s imply for  the boundaries and the hanging shock. 

Let us turn to possible formulat ions of these conditions. Par t  of them are successful ly  formula tedexact ly  
and simply; the res t  yield only to a more  or  less approximate description.  An approximate method to find the 
position of the central  compress ion  shock was considered above. There  ex is tmany other approximate and semi -  
empir ical  methods of determining this quantity with good accuracy~ Below we shall consider  the coordinate 
x s known. The diameter  of the central  shock (the coordinate ys) is considerably more  difficult to subject to 
calculation~ In substance,  there are no reliable methods of finding this quantity. Hence, we shall henceforth 
consider  Ys unknown together  with the pa ramete r s  governing the shock boundary and arc.  As yet  we assume 
that all the flow pa rame te r s  are computed successful ly  in the neighborhood of the shock-front  branch point. 

The hanging shock is generated at in te r ior  points of the s t ream in the fo rm of a zero intensity wave as 
a resu! t  of the intersect ion of charac te r i s t i cs  reflected f rom the boundary~ On a cer tain section it can be 
considered to coincide with the envelope of the charac te r i s t i c s  mentioned, ~here  the f i rs t  reflected cha rac t e r -  
ist ics already in tersect ,  since the initial radius of curvature  of the boundary differs f rom zero [5]. Starting 
f rom these considerat ions ,  the point of hanging shock generation and its initial slope can be found. Therefore ,  
there is a possibil i ty of forming the following five evident conditions which the equations of the boundary and 
shock genera tors  should satisfy:  1) the boundary passes  through the point (0.1}; 2) its slope at this point is 
3H; 3) the slope of the shock is k n o ~  at x = Xs; 4) the coordinates of the point of hanging shock generation 
(x0, Y0) can be calculated; 5) the initial slope of the hanging shock is to be determined~ 

Finally, by using the integral mass  conservation law for  the section in which the central  shock is located 
(see Fig. 1), the radius of the boundary in this section (the coordinate Y3) can be determined under cer tain 
simplifying assumptions.  This resul t  is used as condition 6. 

Further, two approximate conditions can be obtained for an examination of the flow in the neighborhood of 
the point M (Fig. 3), where the tangent to the hanging shock genera tor  is parallel  to the axis of symmetry~ Let 
us consider  the shock to be so weak on the section OM that its front is prac t ica l ly  indistinguishable f rom the 
envelope of the family of cha rac te r i s t i c s  reflected from the boundary, which are themselves rect i l inear .  Then 
the charac te r i s t i c  arr iving at the point M from the boundary will coincide with the tangent to the hanging shock 
at this point and is therefore  paral le l  to the ax~s of symmet ry .  Condition 7 hence follows: the ordinate of the 
point M (Ym) equals the ordinate of that point on the boundary in which the slope of the tangent equals the known 
Maeh angle all" Finally, we have condition 8: the mass  flow rates  of gas through the segments M1M and 
MM 2 are equal (see Fig. 3). The discharge through the section MM 2 carl be determined in the same approxima- 
tion as through the section CM3, and the distr ibution of all the pa ramete r s  along the rec t i l inear  charac te r i s t ic  
M1M is known, in par t icular ,  the mass  flow rate can be calculated. 

Let us examine two vers ions  of solving the problem: taking account of conditions 7 and 8 a n d  without 
taking these conditions into account. In the f i r s t  case ,  a f o u r - p a r a m e t e r  family of curves  can be selected to 
approximate the boundary and the hanging shock (11 = 4), and in the second case,  a t h r ee -pa rame te r  family 
(n= 3). 
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Let us proceed to a specific real izat ion of the scheme designated. Writing the f i rs t  three equations is 
evident. Let us examine the formulated conditions in the above-mentioned o rde r  by start ing with the fourth. 

Condition 4. The coordinates (x0, Y0) of the point can be expressed in t e rms  of the radius of curvature  
R H of the initial element of the je t  boundary under the assumption that the charac te r i s t i c s  are  pract ie  ally r e c -  
t i l inear up to the point of intersect ion (Fig. 4). 

A simple approximate formula  for  R H can be obtained f rom the equation of motion in project ions on the 
normal  to the s t reamline  with the continuity equation taken into account: 

pw ~-/R = --Op '&h c)ff, lOn ~ (ll,ow)Opw/Os = --sin~/y, 

where R is the local radius of curvature;  s and n are the distance along the s t reamline  and its normal .  Since 
pw = const  along the boundary, we obtain f rom the las t  equations 

,.w'-/R = (sinO/y)~p/~.  

The derivative 8p//O,$ is evaluated along the normal  to the boundary. A change in p r e s s u r e  in the ele-  
mentary  compress ion wave reflected f rom the boundary is calculated approximately by means of the plane 
theory of small  dis turbances.  The flow in the neighborhood of the boundary is i r rota t ional ;  hence 

dp ~ (pw:/|"-:]F -- i)d~. 

Therefore ,  

l'/'~ ctg a. (3.1) 

where OlH is the Mach angle; SH is the initial slope of the boundary genera tor  to the jet axis. The approximate 
formula  (3.1) yields completely sa t i s fac tory  agreement  with the resul ts  of exact calculations [5]. According 
to (3.1) and Fig. 4, the coordinates of the point of hanging shock generation are  determined by the formulas 

x 0 = (cosa./sin~.)cos(~. --  a.); go = I -- (cos~,/sin~.)sin(O.--a.). 

Condition 5. The pa ramete r s  in the neighborhood of the triple point possess  g rea t  sensit ivity to the 
change in the magnitude of the initial slope 00 of the hanging shock to the jet axis. The arc  of the hanging shock 
has considerable extent; hence, small  e r r o r s  in determining the angle 00 can be the source  of considerable 
e r r o r s  at the end of this arc.  Let us calculate the magnitude of the increment  in the charac te r i s t i c  angle ( ,S-s )  
during displacement along the last  cha rac te r i s t i c  which converges with the sharp nozzle edge. In the neighbor-  
hood of this edge, the derivatives of the gasdynamic quantities along the f i rs t  family charac te r i s t ic  in the 
rarefact ion-wave domain are  very much grea te r  in absolute value than the same quantities in the direct ion of 
the second family charac te r i s t i c s .  Hence, the compatibil i ty relationship along the f i r s t  family charac ter i s t ic  
is sat isfied approximately in all direct ions in the same form as for  plane flows: 

d~ -~ {cos~'a/[(k - -  1)/2 -~ s in~l}da = O. (3.2) 

In par t icu lar ,  this relationship is valid along the initial element of the boundary charac te r i s t ic  on which 
the exact relationship for  the second family  eharac te r i s t i es  is satisfied: 
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d b -  {cos~-cz/[(k - 1)/2 + s i n e a ] } d a  - - s i n a s i n ~ d /  = 0, (3.3) 

w h e r e  dl i s  the e l e m e n t  of d i s p l a c e m e n t  a long the c h a r a c t e r i s t i c  m e n t i o n e d .  It fo l lows  f r o m  (3.2) and (3.3) 

tha t  

d(ff  - -  a ) / d l  = [(k + i) /4]sinu.sinb/cos2a.  

Th i s  l a t t e r  f o r m u l a  a f fo rds  a p o s s i b i l i t y  of i n t r o d u c i n g  a l i n e a r  c o r r e c t i o n  to the m a g n i t u d e  of the  angle  

t~o = t~. - -  a~ + [d(t~ - -  a ) / d l ] . l  ----- t~. - -  ct. -+- [(k + l ) / 4 ] tga . .  

The c o m p u t a t i o n s  p r e s e n t e d  showed tha t  t ak ing  accoun t  of such  a c o r r e c t i o n  i s  one  of the fundamen ta l  
h y p o t h e s e s  f o r  r a i s i n g  the a c c u r a c y  of d e t e r m i n i n g  the s h o c k - c o n f i g u r a t i o n  p a r a m e t e r s  in a j e t .  

Condi t ion  6. The  m a s s  flow r a t e  th rough  an a nnu l a r  s e c t i o n  CM 3 (see  F i g .  3) i s  

Ys 

Q : 2 ~  S p~tydy,  
YS 

(3.4) 

w h e r e  u i s  the  ax ia l  v e l o c i t y  componer i t .  T h e r e  a r e  no" s h a r p  p e a k s  of the g a s d y n a m i c  p a r a m e t e r s  be tween  the 
b o u n d a r i e s  and the hang ing  shock ,  and al l  the q u a n t i t i e s  v a r y  s u f f i c i e n t l y  s m o o t h l y  a c r o s s  the  d o m a i n .  The  
m a s s  flux d e n s i t y  pu in the s e c t i o n  CM 3 i s  a p p r o x i m a t e d  by a l i n e a r  func t ion  in  y.  We note  the p a r a m e t e r s  at 
the poin t  C b e t w e e n  the b i f u r c a t e d  s h o c k  f r o n t s  by the s u b s c r i p t  1. U n d e r  such  a s s u m p t i o n s  

pu ~ 91ul  ~ [ ( p ~ u .  : -  p , u , ) / ( y  3 - -  Ys)](Y - -  Ys). 

A f t e r  eva lua t i ng  the i n t e g r a l  in  (3.4), the r e s u l t  is  r e d u c e d  to the f o r m  Q = 27r[Plul(y 3 + Ys) + (pHUs - PlUl) .  
(Ys ~ 2Y3)/3] 0 ' 3 -Ys ) -  The  d i s c h a r g e  Q equa l s  the d i s c h a r g e  in the j e t  a f t e r  s u b t r a c t i o n  of the gas  d i s c h a r g e  
p a s s i n g  th rough  the c e n t r a l  shock .  Since  the s e c t i o n  u n d e r  c o n s i d e r a t i o n  i s  u s u a l l y  l o c a t e d  n e a r  the  m a x i m u m  
je t  s e c t i o n ,  the s lope  of the b o u n d a r y  to the j e t  ax is  at the  po in t  M 3 i s  a s m a l l  quan t i ty  and at l e a s t  fo r  u H i t  

i s  p o s s i b l e  to s e t  u H = WHCOS,~ H ~ w H. 

Condi t ions  7 and 8. I t  i s  n e c e s s a r y  to se t  y = c o n s t  = Ym and, t h e r e f o r e ,  ~ - ~ ,  a long the s e c o n d  f a m i l y  
c h a r a c t e r i s t i c  MIM, where  Q, i s  the Mach  angle  (sin ~ = l / M ) ,  Se l ec t i ng  the Mach  n u m b e r  M as the a r g u m e n t ,  
we obta in  f r o m  (1.6) 

d x / d M  = {2 - - [ ( k -  3)/2]M2}/{I ~- [(k - -  t)/2]M 2} = l / I t ' .  

F u r t h e r  c a l c u l a t i o n s  can be p e r f o r m e d  exac t ly ;  h o w e v e r ,  they  a r e  u n j u s t i f i e d l y  t e d i o u s .  The  a p p r o x i m a t i o n s  

/~" ~ const ----- /~'u; 9 a ~ 9~a~[l - -  ( d l n p a / d M ) ~ ( M  - -  MH)]; 

M - -  MH -~  A ' ~ ( x  - -  Xs) 

along the c h a r a c t e r i s t i c  M1M (a i s  the speed  of sound) and 

97. ~ p~VIH[I - -  ( d l n p u / d y ) ~ ( y -  y~.)] 

a long the l ine  MM 2 can  be  u s e d  without  s u b s t a n t i a l  l o s s  in a c c u r a c y .  Subs t i tu t ing  t h e s e  e x p r e s s i o n s  in the e q u a l -  
i ty  of the d i s c h a r g e s  (v -= a on M1M), we ob ta in  an equa t ion  connec t ing  the c o o r d i n a t e s  of the po in t s  on the two 
d e s i r e d  c u r v e s  a f t e r  s i m p l e  m a n i p u l a t i o n s :  

2 [1 + (din] ~,~--~/dM)H/~',(x,~ - -  x~)](xm - -  xl) = 

=M~(ge - -  g,~) [g2 - -  Ym - -  (d lnpw/dM)H[i 'H(xm - -  xz)(g~ --2g,~)/3]. 

Let  us m a k e  the fo l lowing  r e c o m m e n d a t i o n s  r e l a t i v e  to the s e l e c t i o n  of the p a r a m e t r i c  f a m i l i e s  of the c u r v e s  
a p p r o x i m a t i n g  the b o u n d a r y  and the a r c  of the  hanging  shock .  

In the c a s e  of  the f o u r - p a r a m e t e r  p r o b l e m ,  the fac t  tha t  the b o u n d a r y  i s  often s u c c e s s f u l l y  m a p p e d  c o m -  
p l e t e l y  s a t i s f a c t o r i l y  by the a r c  of  a c i r c l e ,  i . e . ,  the  c u r v a t u r e  along the b o u n d a r y  should  be a s l i g h t l y  va ry ing  
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function of the arc  l eng thorcoord ina tegsay  y, can be taken as a pr ior i  information,  in a f i rs t  approximation 
this function can be represented  as a l inear  dependence a l - ~ Y .  On the other  hand, for relat ively smal l  angles 
we consider  the curvature  approximately equal to d~y/dx2o We then obtain the equation 

d2y/dx2=al--a~g, 

whose general  integral 

y = a s sin (a2x -4 ai) + aJa 2 (3.5) 

yields a f o u r - p a r a m e t e r  representa t ion of the boundary (al, a2, a3, a4 are a rb i t r a ry  parameters ) .  The curves 
of the family (3.5) can approximate the boundary and the shock weU in prac t ica l ly  any escape mode. However, 
substituting the function (3.5) into the eight conditions formulated above resul ts  in a quite complicated sys tem 
of transcendental  equations. Fo r  fast  approximate computations it is best  to use the t h r ee -pa r ame te r  model. 
In the ease of the t h r ee -pa r ame te r  problem the s t ructura l  fo rmula  for  the family of curves  is obtained at once 
f rom the solution in a near -ax is  approximation in the form of (1.3), f rom which there  follows that all the i so-  
bars  and par t icular ly  the boundary are descr ibed by an equation for  second-orde r  curves  in the form 

Y = V- a, ~- a~ x -~ %z ~, (3.6) 

i .e. ,  the boundary and wave front are approximated by axes of ell ipses in this approximation. 

Let us especial ly consider  the question of determining the  radius of the central  shock Ys* For  the sake 
of s implici ty,  let us examine the final resul t  in the case of a t h r ee -pa r ame te r  approximation of the form (3.6)~ 

A tendency to s t r eam equilibration in the direction of the jet  axis always exists in a jet flow. The slopes 
of the velocity vector to the jet axis already become small  a f te r  the f i r s t  sys tem of shocks. A contact discon-  
tinuity converging with the contour of the central  shock, which can be considered a normal  compress ion  shock 
in a f i r s t  approximation, also possesses  this proper ty .  Then the initial slope of the contact discontinuity equals 
zero,  and the s t r eam through the shock front can be considered one-dimensional .  

Let us r epresen t  the following as the second approximation: the velocity vector  w ahead of the triple 
point C fo rms  a smal l  angle ~ with the axis of symmet ry ,  the angle of the incident shock with this vector varies  
by a small  quantity z~w, the central  shock curves ,  and the initial element of the contact  discontinuity remains  
parallel  to the axis. Therefore ,  in a second approximation s - 61 + 52 = 0, where 51 and 52 are the angles of 
s t ream rotation on the incident and reflected shocks,  respect ively.  

Let us use the formula  (2.11) obtained above. Then 

Apj_/p ----?(M)e, A~ = (k + i)7(M)e/2kM2sin2r (3.7) 

Let us assume the flow through the central  shock contour to be one-dimensional  in a s t r eam tube pass ing 

through the central  shock contour.  Hence 

where 

, ~  d a l d x  = ( d l n y / d M ) ( d M / d x ) g  = [~(M)hl(M)]g, (3.s) 

~(M) = [q(M)/2x~(M)ldlnq(M)/dM; 
~](M) = i --  (k -~-i)u162 

Here q(M) is a tabulated gasdynamic discharge function, and x(M) is a function charac te r iz ing  the Mach number 
distribution along the jet  axis. On the basis of (307) and (308) 

Os = ~o + A O =  o ) - - ~ y s .  

Substituting the value of es in the conditions 3-5, we find the radius of the central  compress ion shock 

x~ - -  Xo\ - 
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Numerous computations were per formed of the shock configurations for  underexpanded jets in a broad 
range of initial pa rame te r  values. Results  of the computations were compared with published resul ts  of nu- 
mer ica l  computations and experimental  measurements .  Presented. in Fig. 5 is a comparison between a com-  
putation using (3o9) and the resul ts  of experiments  [5] (the solid and dashed lines, respectively) for Ma = 1.5, 
k =  1o4o 

Analogous resul ts  have been obtained for  other values of the initial pa rame te r s :  

t ~ M a ~ 5 ,  2 ~ p a / p , , ~  lO0. 

�9 An estimate made of the influence of the possible assumptions on the magnitude of the radius of the cen- 
tral  shock showed that replacing it by a normal  shock (fl = 0) induces an e r r o r  on the o rde r  of 20-30% in Ys. 
Displacement of the point of hanging shock generation to the noT.zle edge changes the value of Ys by 30-40%. 
But the g rea tes t  e r r o r  is associated with determining the initial slope of the hanging shock: equating O 0 to the 
angle ~ H -  C~H changes Ys by 50-70%. The e r r o r s  mentioned can hence appear in one direction, i .e. ,  do not 
cancel each other. 

w Fo r  the sake of completeness  of analysis  of the question about a f ree  jet, le tus  examine the possible 
method of describing the flow in a gas jet passing through a central  compress ion  shock, par t icular ly  the de ter -  
mination of the shape of the contact discontinuity. 

Let a cer tain s t r eam tube with the c ross - sec t iona l  a rea  F 0 ~ const  (Fig. 6) exist such that the flow on its 
boundary is already prac t ica l ly  independent of the shape of the contact discontinuity. Let us consider  the gen- 
e ra tors  of this surface rec t i l inear  and parallel  to the axis of jet symmet ry .  Let us partition the flow in the 
s t ream tube into two par ts :  a one-dimensional  flow ~4thin the s t ream tube which res ts  on the central  shock 
contour (the domain II in Fig~ 6) and an outer supersonic flow in the annular domain I, where the one-dimension-  
al descr ipt ion of the motion turns out to be inadequate~ If f is the c ross - sec t iona l  area  of domain II, then a 
change in p r e s s u r e  along the contact  discontinuity f rom this domain is written as 

@ ,  = (@/d/)d]. 

The change in p r e s s u r e  f rom the supersonic domain side I is determined by two causes:  f i rs t ,  for each 
rotation of the boundary through a small  angle d~ e lementary  compress ion  or  rarefact ion waves stand off f rom 
the boundary in conformity with the direction of rotation; secondly, effective broadening or  compress ion  of the 
whole s t ream occurs  because of the change in c ross - sec t iona l  a rea  of the annular s t ream tube. These effects 
can appear in one or  the opposite direct ions.  The resultant p ressu re  change f rom the outer flow is r ep resen t -  
able as 

dp~ = (Op/OF)dF -',- (c)p/O,O)d~. 

The p r e s s u r e  continuity condition on the contact surface dpl = dP2 can be written as 

(dp/d.i)d]: = (Op,'OF)dF +- (Op/O~)dff. (4.1) 

According to one-dimensional  theory 

According to the theory of simple waves 
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Evidently, 

O.._p.p = kM~p 

ae V M ' ~ -  i" 

f : ~ f ;  F = Fo --].  

After the substitutions mentioned, (4.1) becomes 

d~ -]- (~  ~ 2~ ) dy = O. (4.2) 

The radius of the s t r eam tube II is a relat ively slightly varying quantity. Hence, the f i rs t  member  in the 
parentheses  is a finite, almost  constant  value. The second member  can grow without l imit  as M 2 ~ 1, but this 
member  is much less than the f i r s t  in sections where M 2 is considerably less  than one, since M~/M~ <<1. 
Therefore ,  the contribution of the second member  must  be taken into account only near  the cr i t ical  section, 
i .e . ,  in the second member  M 2 can be replaced by its asymptotic express ion as M 2 --* 1, as follows f rom the 
differential relationship between the section a rea  and the Mach number in a one-dimensional  s t r eam:  

d/_ M~ - i (4.3) 

We hence obtain as M 2 ~ 1 

(y- -y , ) /y  ~ [2/(k Jr l)](M2 -- i) 2, 

where y .  is the radius of the cr i t ical  section,  

and M2s is  the Mach number  behind the central  shock. Let us introduce the notation V = ( y - y . ) / y , .  Then M 2 
1 ~= ~/[(k + 1)/2)] 7/ (the minus sign should be taken for  the subsonic section and the plus sign for  the supersonic 
section of the jet). According to the above, we 'can put M l - 1  ~ / [ ( k  + 1) /2]~ in  (4.2) in the whole subsonic s ec -  
tion. After integrating with the condition # = 0 for  7/= 0 (in the critic al section), we obtain 

[ (4.4) 0 = 2 ~ Vk-- ~ Ys 2 ]/'2" Ys 

\ 

(the slightly varying quantities in the parentheses  are replaced by their values in the initial section). It follows 
f rom (4,4) that O = 0 (except the minimum Section) and in the section where  

2 V2 i22s -- t (Fo _ 1). 

Here the maximum of the jet c ros s - sec t iona l  a rea  evidently holds. However,  it is still impossible  to determine 
the radius of this section by means of this last  formula ,  since F 0 is an unknown constant.  To determine it, it is  
neces sa ry  to know the initial value of  the slope of the contact discontinuity ~s ,  in (4.4) and above ~s = 0. This 
quantity can be detern~ned more  exactly in the f ramework  of the reasoning used. Let us clar i fy this possibil i ty 
without going into detail,  since ~s for  a free jet is henceforth of no in teres t .  

The central  shock in a free je t  is a curvi l inear  surface turned convexly downstream (Fig. 7). The ten- 
dency for equilibration of the velocity direct ions along the axis of symmet ry  in a jet has a l ready been noted. 
If it is assumed that the equilibration is achieved completely behind the central  shock, then the flow in II will 
be an isobar ic  vortex s t r eam parallel  to the axis. The angle of s t r eam rotation on the wave front at each point 
of the front is then equal to the slope of the velocity vector  # to the axis ahead of the front, i .e. ,  
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F i g .  7 

p2kM 2 _ ~ ~ 2k 
- -  - -  t ~ k.---_~T 1 -M2 

0 ~ P 1 (4o5) 
l § p ' k T i  

a c c o r d i n g  to the  known f o r m u l a  f o r  shocks  (2.1). H e r e  the t angen t  i s  r e p l a c e d  by  the a rgumen t ;  P2 i s  the con -  
s t a n t  p r e s s u r e  behind the f ron t ;  p i s  the  v a r i a b l e  p r e s s u r e  in  the nonun i fo rm  s t r e a m  ahead of  the  f ron t ,  which 
i s  a known func t ion  of  M ( i s e n t r o p i c  coupl ing) ,  i . e . ,  4 = O(M) b e c a u s e  of {4.5),  w h e r e  | i s  a known func t ion .  
The f low ahead of the shock  f ron t  wi l l  be  e x a m i n e d  in a o n e - d i m e n s i o n a l  a p p r o x i m a t i o n .  Then 

= dyldx = (yl2)(d In ildM)dMldx. 

In the o n e - d i m e n s i o n a l  s t r e a m  d In f / d M  i s  a kno~m func t ion  of M, i . e . ,  (1/2)dlnf /dM = ~ M ) .  F r o m  the l a s t  
two equa t ions  

dM/dx = 0(M)/ycf(M). (4.6) 

Le t  8 y / S x  be the d e r i v a t i v e  a long  the wave f r o n t  and cc the s lope  of the f ron t  to the ve loc i t y  v e c t o r  ahead of 
the f ront ;  then 

Oy/Ox = tg(0~ - - ~ )  = e(M), 

w h e r e  e(M) is  a known func t ion .  Hence  and f r o m  (406) 

0 in y/OM = e(M)~(M)/@(M). 

This  l a t t e r  e q u a l i t y  d e t e r m i n e s  y(M),  and M(x) i s  found f r o m  (4ol), i . e . ,  the Mach n u m b e r  d i s t r i b u t i o n  
law b e f o r e  the wave f r o n t .  Such a d i s t r i b u t i o n  d i f f e r s  f r o m  that  g iven  in the i n c o m i n g  je t .  Hence ,  c o m p l e t e  
e q u i l i b r a t i o n  of the  v e l o c i t y  d i r e c t i o n s  i s  i m p o s s i b l e  and i s  ach ieved  j u s t  as  much  a s  the ex i s t i ng  d i s t r i b u t i o n  
M(x) in  the j e t  ahead  of the shock  a d m i t s .  N e a r  the j e t  ax is  ~ ~ y.  T a k i n g  the d e p e n d e n c e  4 = a y  beh ind  the 
shock  f ron t  wi l l  be the  s i m p l e s t  r e f i n e m e n t  of  the c o m p u t a t i o n a l  s c h e m e  (a i s  a c:mstant)o If i t  i s  c o n s i d e r e d  
that  ~ ~ 0, ~ = ay  f o r  a l l  the  p r e v i o u s  a s s u m p t i o n s ,  then ~ - ay  m u s t  be  w r i t t e n  in p l a c e  of ~ and the r e s u l t  
of i n t e g r a t i n g  the r e l a t i o n  r 6) wi l l  con ta in  the p a r a m e t e r  a :  M = M (x, a). Now a m u s t  be  s e l e c t e d  such  tha t  the  d e p e n -  
d e n c e  M (x. a) wi l l  a p p r o x i m a t e  the g iven  d e p e n d e n c e  o p t i m a l l y  in s o m e  s e n s e .  Th i s  de f ines  ~s = aYs. Al l  the  o p e r -  
a t ions  m e n t i o n e d  a r e  r e a l i z e d  s i m p l y ,  s ince  the r a n g e  of v a r i a t i o n  of the  M a t h  n u m b e r s  u n d e r  c o n s i d e r a t i o n  
is  qu i te  s m a l l  and i t  is  p o s s i b l e  to l i m i t  o n e s e l f  to the f i r s t  t e r m s  of the expans ion  e v e r y w h e r e .  

Le t  us c o n s i d e r  m o d e l  c o n s t r u c t i o n s  f o r  r e s t r i c t e d  j e t s  i n t e r a c t i n g  with o b s t a c l e s  by  c o n s i d e r i n g  the ob-  
s t a c l e  such that  i t  does  not spo i l  the ax ia l  s y m m e t r y .  

w 5. As  b e f o r e ,  the  p r o b l e m  of d e t e r m i n i n g  the p o s i t i o n  of the  c e n t r a l  c o m p r e s s i o n  shock  r e m a i n s  one of 
the f u n d a m e n t a l  q u e s t i o n s .  Now the c o o r d i n a t e  x s depends  not only  on the c o u n t e r p r e s s u r e ,  but p r i m a r i l y  on 
the p o s i t i o n  and shape  of  the o b s t a c l e .  T h e r e  a r e  s t i l l  no conven ien t  and s i m p l e  me thods  of d e t e r m i n i n g  these  
q u a n t i t i e s .  E x p e r i m e n t a l  i n v e s t i g a t i o n s  a r e  not s u b j e c t  to su f f i c i en t  g e n e r a l i z a t i o n ,  and n u m e r i c a l  m e t h o d s  
a r e  f r augh t  with m a j o r  d i f f i c u l t i e s  in  t h e i r  r e a l i z a t i o n .  

P r e s e n t e d  in F i g .  8 i s  a s t r e a m  s c h e m e  in the  c a s e  of an u n d e r e x p a n d e d  j e t  ( p a / P H  > 1), imp ing ing  on an 
o b s t a c l e ,  whe re  OC i s  the hang ing ,  CB the r e f l e c t e d ,  and CC the c e n t r a l  c o m p r e s s i o n  shock;  CE is  the con t ac t  
d i s con t inu i ty ;  and ABD i s  the j e t  b o u n d a r y ;  the  s o l i d  l i n e s  a r e  the shock  f r o n t s  and the d a s h e s  deno te  con t ac t  
d i s c o n t i n u i t i e s .  Up to the l a s t  s y s t e m  of c o m p r e s s i o n  shocks  (CC and CB) the s t r e a m  in f ron t  of  the f ace  s ide  
of the o b s t a c l e  2 c o i n c i d e s  with the  f low in a f r e e  j e t  with the s a m e  p a r a m e t e r s  in  the nozz le  ex i t  s e c t i o n  1. 
The so lu t i on  f o r  th is  p a r t  of  the  s t r e a m  is  a s s u m e d  known. 
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�9 The st l 'cam behind the sys tem of compress ion  shocks CC and CB can be separated into two domains:  
II is the flow domain behind the central  compress ion  shock between the contact discontinuity and the body 
surface,  and I the domain of the per iphera l  s t r eam external with respec t  to II. 

If the shape of the contact discontinuity has been found, then the computation of the flow in the per iphera l  
s t r eam domain reduces to the problem of the nonuniform flow around a cer ta in  body with one attached shock. 

An approximate method is proposed,  based on the l inear  approximation of the velocity dependence on the 
p ressu re  along a s t reamline ,  to determine the flow in domain II. Such an approach has been used in external 
flow problems [6, 7]. 

The l inear  approximation permi t s  integration of the sys tem of gasdynamic equations for  an inviscid non- 
heat-conduct ing gas.  A simple Connection is hence obtained between the kinematic flow pa rame te r s  (kinematic 

in tegra l ) ,  which affords the possibi l i ty of finding the position of the triple point and the shape of the contact 
discontinuity without solving the problem as a whole [8]. 

The p r e s s u r e  dependence of the velocity is written as 

w =  Ap  -+- B,  

where A and B are functions of just  one variable,  the s t ream function ~', which is determined by the relat ion-  
ship 

d~/Ipw = y cos ~dy - -  y sin Odx. (5.1) 

By virtue of the approximation used, pw is also a function of just the one variable ~; hence, we have a 
total differential  of some function in the left side of (5.1). The condition that a total differential is on the right 
is written as 

O(y ccs O)/Ox -}- 9(y sin ~)/Oy = O. 

Hence 

x = y sin t~ In tg(~/2)-~/(y sin ~), (5.2) 

where f ( y  sin ~) is an a rb i t r a ry  function of its argument,  determined f rom the condition of impermeabi l i ty  on 
the body surface.  Fo r  fundamental obstacle shapes the express ion for  it is written explicitly. 

The s t reamline  equation can be integrated in the presence  of the kinematic integral (5.2). The result  is 
obtained in finite form.  Therefore ,  the equation of the line of the contact discontinuity can be determined as a 
s t reamline  converging with the contour of the central  compress ion  shock. 

Since the position of the central  compress ion  shock is unknown in advance, it is considered that the triple 
point can occupy any position on the hanging compress ion shock. Knowledge of the flow field in a f ree jet with 
the same pa ramete r s  in the nozzle exit section as in the jet impinging on the obstacle yields the equation of an 
are of the hanging shock and the s t ream pa rame te r s  in front of it. All the s t ream pa rame te r s  behind the tr iple 
point, including even the slope of the velocity vector  to the axis of symmet ry ,  can be determined for  each point 
of this shock by means of the relat ions for the triple shock configuration. Therefore ,  a dependence of this 
angle on the axial coordinate ~ = O1 (x) is obtained f rom a computation of the free jet. 

Fo r  a given obstacle position, the slope of the velocity vector  behind the triple point can be found for  all 
points of the hanging shock and f rom a computation of domain II. Along the contour of a body of given shape, 
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the d e p e n d e n c e  '9 = O(Y), which  d e t e r m i n e s  the  f o r m  of  the a r b i t r a r y  func t ion  f ( y  s in  '9), i s  c o n s i d e r e d  known. 
F o r  each  po in t  c o r r e s p o n d i n g  to the equa t ion  of the hang ing  shock,  '9 i s  found by  m e a n s  of the r e l a t i o n s h i p  (5.2), 
i.eo, the s a m e  d e p e n d e n c e  of  the s l o p e  of the  v e l o c i t y  v e c t o r  behind  the  t r i p l e  po in t  i s  d e t e r m i n e d ,  but  f r o m  the 
so lu t ion  t ak ing  account  of  the  condi t ion  on the body '9 = | The p o s i t i o n  of the t r i p l e  p o i n t  i s  d e t e r m i n e d  by 
the i n t e r s e c t i o n  b e t w e e n  the c u r v e s  '9 = Ol(x); ,9 = | 

R e s u l t s  of a c o m p u t a t i o n  f o r  one of the s p e c i f i c  c a s e s  when the p a r a m e t e r s  in the  nozz l e  e x i t  s e c t i o n  a r e  
cons t an t  and the s p a c i n g  be tween  the n o z z l e  and the o b s t a c l e  t aken  on a n u m b e r  of  va lue s  a r e  p r e s e n t e d  as  an 
i l l u s t r a t i o n  in F i g .  9. T h e r e  i s  one c u r v e  of the d e p e n d e n c e  '9 = @l(x) and a s e t  of  c u r v e s  of the d e p e n d e n c e  
,~ = 02(x), w h e r e  each  c u r v e  of th i s  s e t  c o r r e s p o n d s  to a de f in i t e  p o s i t i o n  of the  o b s t a c l e  x = Xob. The p o s i t i o n  
of the t r i p l e  po in t  f o r  e ach  va lue  of Xob i s  found f r o m  the i n t e r s e c t i o n  of  the a p p r o p r i a t e  c u r v e  '9 = O2(x) with 
the c u r v e  '9 = Oi (x). 

P o s i t i o n s  of the 
the fo l lowing  r a n g e  of  

c e n t r a l  shock  (the t r i p l e  point)  w e r e  c o m p u t e d  a c c o r d i n g  to the s c h e m e  g i v e n  above  f o r  
the  g o v e r n i n g  p a r a m e t e r s -  p a / p  H = 3 - 12; M a = 1 - 3; 'ga = 0~ k = 1.4.  The  o b s t a c l e s  

w e r e  t aken  as  in f in i t e  p l a n e s  and c y l i n d e r s  with a f l a t  end f a c e .  The  spa c ing  be tween  the nozz le  and the o b s t a -  
c le  did  not  e x c e e d  the l eng th  of the  i n i t i a l  g a s d y n a m i c  s e c t i o n  of  the j e t .  The  s t r e a m  p a r a m e t e r s  in  a d o m a i n  
w4aich a g r e e s  with the f low in a f r e e  j e t  and the equat ion  of an a r c  of the i n c i d e n t  shock  w e r e  c o m p u t e d  by  the 
me thod  e l u c i d a t e d  above~ 

A c o m p a r i s o n  b e t w e e n  the c o m p u t e d  d a t a  in r e l a t i v e  c o o r d i n a t e s  and the e x p e r i m e n t a l  d a t a  f o r  j e t  inf low 
on a f l a t  in f in i t e  o b s t a c l e  i s  g iven  in F i g .  10 (va lues  of  M: 1 - 1.0; 2, 3, 4 - 1.5; 5, 6 - 2.0; 7,  8 - 3 . 0 ;  v a l u e s  of  
pa/PH: 1, 4, 6 - 12; 2,  8 - 5; 3, 5, 7 - 8). The  d i s t a n c e s  be tw e e n  the n o z z l e  and o b s t a c l e  and the c e n t r a l  c o m -  
p r e s s i o n  shock  x s a r e  r e f e r r e d  to the  d i s t a n c e  b e t w e e n  the nozz le  and the c e n t r a l  s h o c k  x~ in a f r e e  j e t .  The  
f r e e  j e t  p a r a m e t e r s  w e r e  t aken  equa l  to the  p a r a m e t e r s  of a j e t  i m p i n g i n g  on the o b s t a c l e  f o r  each  po in t .  The  
e x p e r i m e n t a l  d a t a  a r e  r e p r e s e n t e d  in  F ig ,  10 as  the c u r v e  9 of a g e n e r a l i z e d  de pe nde nc e  [9], va l id  in the r a n g e  
of g o v e r n i n g  p a r a m e t e r s  u n d e r  c o n s i d e r a t i o n  (the s o l i d  l ine ) .  A g r e e m e n t  be tw e e n  the compu ted  and e x p e r i m e n t -  
al d a t a  can  be  c o n s i d e r e d  s a t i s f a c t o r y ~  

w 6. S t r e a m  t u b e s  in the  n e i g h b o r h o o d  of the  a x i s  of  s y m m e t r y  of the  i m p i n g i n g  j e t  u n d e r g o  s h a r p  c h a n g e s  
in t h e i r  c o n f i g u r a t i o n  ahead  of the  o b s t a c l e .  A r e l a t i v e l y  s m a l l  r e g i o n  of  e s s e n t i a l l y  s p a t i a l  f low can be s i m u -  
l a t ed  by  a d i s c o n t i n u i t y  in the s t r e a m  p a r a m e t e r s ,  among which i s  the  c r o s s - s e c t i o n a l  a r e a  of the tube (F ig .  11). 
The in f luence  of the  o b s t a c l e  on the fundamen ta l  j e t  f low p a r a m e t e r s  i s  s tud ied  by us ing  the g e n e r a l  c o n s e r v a -  
tion l aws  w r i t t e n  down fo r  a c o n d i t i o n a l  d i s c o n t i n u i t y  [10]o In p a r t i c u l a r ,  such an a p p r o a c h  p e r m i t s  e s t a b l i s h -  
m e n t  of  a connec t ion  be tween  the p o s i t i o n  of the Mach d i s k  in a s y s t e m  of b i f u r c a t e d  shocks  and the f o r c e  of  j e t  
ac t ion  on the o b s t a c l e .  A p p r o b a t i o n  of the a p p r o a c h  p r o p o s e d  i s  a c o n f i r m a t i o n  of th is  connec t ion  by m e a n s  of 
quan t i t i e s  e a s i l y  m e a s u r e d  in an e x p e r i m e n t ,  as  h a s  been  done fo r  a v a i l a b l e  d a t a .  

Let  us w r i t e  the  g e n e r a l  c o n s e r v a t i o n  l aws  f o r  the cond i t i ona l  d i s c o n t i n u i t y :  

t)~w~F1 = t)~w~(F; - -  Fob); 

PeW }_ (F2 - -  Fob) - -  pzw2F~ = p~Fz - -  P.2 (F2 - -  Fo b) -- R';  (6.1) 

T -r-k--1 2 k - -  1' 

w h e r e  F i s  the c r o s s - s e c t i o n a l  a r e a  of the s t r e a m  tube (Fob i s  the  a r e a  of the obs t ac l e )~  The  s u b s c r i p t s  1 and 
2 r e f e r  to the a p p r o p r i a t e  c h e c k i n g  s e c t i o n s  1 - 1  and 2 - 2  in F i g .  11. L e t  us  u se  the no ta t ion  

R' = R  - - R " ,  
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where  R is the r eac t ion  of the obs t ac l e ,  and R" is the axial component  of  the f o r c e  act ing on the con tac t  d i s -  
continui ty su r f ace  between sec t ions  1 and 2. Le t  us  i n t roduce  the d i m e n s i o n l e s s  coeff ic ient  fl f o r  the f o r c e  R'  : 

R ' = ~ P l w ~ F 1  �9 (6.2) 

Taking account  of (6.2), the equat ion 

i + ~  

is  found f r o m  the s y s t e m  (6.1); i t s  so lut ion has  the f o r m  

k--  i M2 ~ ,j 
M ~ =  t - 

k V  [kM2 (l -- [3) + i]2--2(k §  M2(' k - - i  2\ + - - : -  M,) + l + k.~I~ (i - ~) 

The s ign in f ron t  o f  the r ad ica l  is se l ec ted  such that  f o r  ",v 1 - -  0; w 2 - -  0. 

The m a x i m u m  value of the Mach n u m b e r  (M 2 = 1) is achieved when the r ad icand  equals  ze ro .  Hence ,  f o r  
the l imi t  mode  

(i--M~) 2 

where  the s ign in f ront  of  the rad ica l  is se lec ted  f r o m  the condi t ion fi >_ 0 (the f o r c e  is R '  ~ 0 and is d i r ec ted  
along the jet  axis) .  

Let  us s e p a r a t e  the s t r e a m  in f ron t  of the obs tac le  into e x t e r i o r  I and i n t e r i o r  II with r e s p e c t  to the con-  
tact  d i scont inu i ty  CE which c o n v e r g e s  with the con tou r  of the cen t ra l  shock  (see Fig.  11). If the p r e s s u r e  f r o m  
the e x t e r i o r  s t r e a m  s ide  p can be c o n s i d e r e d  a s l ight ly  va ry ing  quant i ty ,  then 

B"~p(F2 --F:). 

The shape  of  the contac t  d i scont inu i ty  i s  such that p >_ Pl (Pi  is the p r e s s u r e  in the i n t e r i o r  s t r e a m ) .  In e s t i -  
m a t e s ,  p was taken equal to the l o w e r  l im i t  of  Pl. 

F r o m  the c o n s e r v a t i o n  laws t h e r e  fol lows 

p: Mo ~ l§  2 
- -  = k - - t  . '  
r,~ / -~-~-~ i + _ V _ ~ :  ~ 

where f = (F 2 -- Fob)/F i. 

If irreversible losses between the sections I-I and 2-2 are neglected, then 

P' i: + ~-MJ 

(6.3) 

(6.4) 
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F r o m  (6.3) and (6,4) we find 

/ k ~ i  2 \ - - ( h + t ) / ~ ( k - - t )  �9 

U 
For  M 2 = 1 

Finally, 

] =  M x ( ~ ) k  --' l' (~+l)/2<~-l) ( + 1  k 2__..Ji ~]M2] -(k+');2@- l). 

R = p~  [ r ~  ( ]  - 1) - F o b ] +  f~kp~M~F. 

The flow to the central  shock agrees with the flow in a f ree jet. Hence, to determine the pa ramete r s  be- 
hind the central  shock it is sufficient just to know its position. 

Let us examine the resul ts  of computations in which the values of the central  shock coordinate x s was 
taken f rom the experimental  data [11]. The flow behind the shock was considered paral le l  to the axis (F 1 = Fs) 
and the s t r eam pa rame te r s  in the section 1 - 1  were assumed equal to the pa r ame te r s  on the jet axis behind a 
normal  compress ion  shock. The resul ts  of the computations were compared with data obtained by integration 
over  available experimental  points charac te r iz ing  the p ressu re  distribution on the obstacle surface.  

Results are  presented in Fig. 12 in the s ta t ionary flow case;  the curves  1 cor respond to the experimental 
resul ts  and curves 2, to the computation by the scheme elucidated above. An analogous correspondence  between 
the resul ts  is  obtained also for  the o ther  initial pa ramete r s  when the radius of the obstacle is on the o rder  of 
the radius of the central  compress ion  shock, 

The position of the Mach disk can be determined by computation also by the method elucidated above. 
Curves 3 in Fig. 12 cor respond to the resul ts  of a computation of the body reaction by using computed values of 
XSO 

w 7. If the position of the obstacle is such that there is no intersect ion of the curves  ,~ = | (x) and $ = | (x) 
(Xob > x* ob in Fig. 9), then the solution of the problem can be constructed theoret ical ly:  the position o~ the 
shock should hence cor respond  to the Ereatest  achievable distance f rom the obstacle and the two values ~ = 
Ol(x s) and ~ = | for  the des i red  angle are  the solution for  such an x s, and can be t reated as the appearance 
of t~<) contact discontinuities issuing f rom one point with a wedge stagnant region between them, behind the 
bifurcation point of the fronts .  This question mer i t s  more  careful  discussion.  

If three genera tors  of the shock fronts converge at one point, then the general  conservat ion laws connect-  
ing the gas pa rame te r s  in the neighborhood of such a point will genera l ly  yield an overdefined sys tem of re la -  
t ionships. To eliminate a possible contradict ion,  it becomes necessa ry  to increase  the a rb i t ra r iness  in the 
quantity of initial pa ramete r s .  The assumption of the presence of a contact discontinuity issuing f rom the 
branch point is s implest  and sufficient~ The next step in increas ing the arb i t ra r iness  mentioned is assuming 
the possibil i ty of the appearance of two contact discontinuities,  which form two opposite edges of an i sobar ic  
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Fig, 13 

domain filled with a gas  in a re la t ive  r e s t  s ta te  re la t ive  to the b ranch  point of the shocks.  Such a domain can 
be called the wake of the t r ip le  point  because  of the explici t  quali tat ive analogy with an aerodynamic  wake be -  
hind poor ly  s t reaml ined  bodies.  

Under s ta t ionary  conditions the wake behind a t r ip le  point cannot or iginate ,  s ince even tangential  s t r e s s e s  �9 
of ve ry  sma l l  magnitude on its boundary cannot at all be equil ibrated,  and such a fo rmat ion  is  s e v e r e d  f rom a 
wave configuration in any real  s t r e a m ,  ro l l s  up into a vor tex,  and is entrained by the s t r e a m .  However ,  the 
resul tan t  tangential  s t r e s s  on the wake boundary can be cancelled by the iner t ia l  fo rces  during motion of a t r i -  
ple configuration with acce le ra t ion  d i rec ted  along the re la t ive  f r e e s t r e a m  veloci ty vec tor  ahead of the branch  
point. In this case  the vor tex- f i l l ed  wake can exis t  and be developed because  of making up the m a s s  f rom the 
ex te r io r  s t r e a m  (Fig. 13), where the solid lines a re  the shock f ronts ,  the dashes  a re  the contact  discont inui t ies ,  
v is  the f r e e s t r e a m  velocity,  and D is the ra te  of d i sp lacement  of the branch  point. 

If all the waves have finite intensi ty,  then the velocity head in a s t r e a m  undergoing two-s tage  c o m p r e s -  
sion is many t imes  g r e a t e r  than the veloci ty  head behind a s t rong shock. This  means  that the role  of the f i r s t  
of the s t r e a m s  mentioned re la t ive  to the second approximates  the effect  of a solid wall.  The boundary with 
the h i g h - p r e s s u r e  s t r e a m  becom es  a lmos t  r ec t i l i nea r ,  and l iberat ion of the volume fo r  the developing wake oc -  
curs  pr inc ipa l ly  because  of deformat ion  of the s t r e a m  pass ing  through an a lmos t  normal  shock. T h e r e f o r e ,  
the wake region has t he  f o r m  of a t rough behind a cyl indr ica l  sur face  bounding the l o w - p r e s s u r e  flow domain. 

Fo rma t ion  of the trough s t r eaml ined  by a supersonic  s t r e a m  can be i l lus t ra ted  by the following s imple  
model p rob lem:  let  the impinging s t r e a m  be a two- layered  flow of an ideal  medium separa ted  by a contact  
discontinuity in the f o r m  of a hor izontal  plane~ The velocity above this discontinuity is essen t ia l ly  superson ic ,  
while under  the discontinuity the s t r e a m  is  ' l ow-p re s su re ,  subsonic.  The body being s t r eaml ined  exhibits  a d i -  
hedral  angle with an edge in the plane of the contact  discontinuity,  pe rpend icu la r  to the d i rec t ion  of the f r e e -  
s t r e a m  velocity.  The s t r eaml ined  angle can rota te  f r e e ly  around its  edge and has  faces  of smal l  extent in the 
flow direct ion.  

The force  balance will evidently be such that the upper  face of the augie, being subjected to the effect  of 
the h i g h - p r e s s u r e  s t r e a m ,  is p rac t i ca l ly  located in the plane of the contact  discontinuity,  per turb ing  the ex te r io r  
flow slightly~ On the other  hand, the lower  face pene t ra tes  deeply into the l o w - p r e s s u r e  domain,  producing a 
developed separa t ion  flow because  of deformat ion  of the subsonic s t r e a m .  A comple te ly  analogous effect  occurs  
behind the shock-wave  branch  point in the si tuation under considera t ion .  Because  of the imposs ib i l i ty  of s a t i s -  
fying the conditions of the p r o b l e m  by using the scheme  of th ree  shocks with one contact  discontinuity~ two 
contac t  discont inui t ies  with a finite apex angle of the wedge domain between them or iginate  (the analog of the 
dihedral  angle). At l e a s t  the init ial  e lements  of the sl ip l ines behave s i m i l a r l y  to the faces  of a light wedge, by 
mainly  de forming  the s t r e a m  with re la t ive ly  low veloci ty head, i .e.,  a f r ee  volume of the trough type is  fo rmed  
on the sur face  of the cyl inder  bounding the subsonic  flow. 

The flow around such a trough and i ts  development  occur  under  the dominat ing influence of the ex te r io r  
supersonic  s t r e a m .  

The shock configurat ion in a je t  becomes  unstable upon the impac t  of the supersonic  je t  on an obs tac le  
in some  suff icient ly n a r r o w  range  of escape  p a r a m e t e r s ,  the s ta t ionary  flow goes  spontaneously over  into a 
nonsta t ionary  flow, and a se l f - sus ta in ing  s.trongly fluctuating wave p r o c e s s  or ig ina tes  in f ron t  of the face side 
of the obstacle .  I t  is now c lea r  that the in ternal  turbulent  wake, which or ig ina tes  and decays  per iod ica l ly  be -  
hind the b i furcat ion line of the s t rong  shock f ronts ,  p lays  the ma jo r ,  probably  governing,  role  in the mechan i sm 
of this phenomenon. The application of the r e su l t s  of invest igat ing this phenomenon to analyzing the pulsat ion 
modes afforded the poss ib i l i ty  of explaining and matching many fac ts  which are  exper imenta l ly  observable .  

The s t r e a m  pulsat ions a re  accompanied by significant d i sp lacements  of the s t rong cen t ra l  shock along the 
nonuniform background,  whereupon intense entropy waves  pass  ove r  the subsonic je t  behind this shock. 
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Several d i sc re te  vibrational tones, differing substantially in frequency,  are usually observed.  The l .w-  
frequency pulsations can have a high amplitude and are of fundamental in te res t  for  investigations.  The ampli-  
tude of the high-frequency fluctuations is usually small ,  and es t imates  of the frequency show that these fluctu- 
ations are  associated with p rocesses  being propagated with the speed of sound. 

An attempt has been made in [2] to const ruct  a simplified mathematical  model of this phenomenon on the 
basis  of a one-dimensional  descript ion of the nonstat ionary wave p rocesses  under the assumption that the main 
sampling of the mass  in the wake region is concentrated in the tail par t  of the wake where a sharp change in the 
s t r eam geomet ry  occurs .  This la t ter  c i rcumstance  permit ted simulation of tMs phenomenon by a discontinuity 
in the one-dimensional  s t r eam pa rame te r s  with the inclusion of the a rea  of the active section and the mass  
discharge.  Such a schematizat ion of the flow can be used to descr ibe  the initial stage of wake formation,  when 
the dissipative mixing p roces se s  exert  no essential  influence on the dynamics of the phenomenon. At la ter  
t imes,  a model with a dominant i sobar ic  mixing of the s t r eams  is more  preferable .  

The difficulty in solving problems as a whole is determined by two main reasons :  inadequate study and 
complexity of the quantitative descript ion of the motion of a triple shock configuration with the formation of a 
wake behind the bifurcation point and the complex spatial nature of the flow in the neighborhood of the obstacle.  

The second reason plays a subordinate role in the problems considered and hence can be satisfied by an 
approximate approach in the form of the simulating discontinuity cons idered  above, for example. 

The wake behind a triple point is that single element of a sys tem which cannot, in principle,  exist and be 
developed under  s ta t ionary real  flow conditions and in this sense is the original cause for the passage to the 
pulsating interaction mode~ 

Therefore ,  there is a foundation to assume that the domain of pa r ame te r s  in which there is no in t e r sec -  
tion between the curves  ~ = @l(x) and ~ = O2(x) (see Fig. 9) is a nonstat ionary interaction zone. F rom an analy- 
sis of the obtained computational resul ts  there follows that the boundary of no stat ionary solution corresponds  
(in the terminology of [9]) to the lower boundary of a zone of s t rong instability~ Presented in Fig. 14 is a c o m -  
parison of these boundaries in the case of jet inflow onto a flat infinite obstacle.  The solid line is the boundary 
of no solution to which Xob = x* ob cor responds  in Fig. 9. Although quantitative agreement is sa t i s fac tory  just 
for M a = 1, qualitative agreement  holds in all regimes~ Similar  resul ts  have also been obtained for  finite 
obstacles (cylinders ~4th a flat end face). 

There  is still no sa t i s fac tory  mathematical  model of the fluctuation cycle constructed on the basis of a 
hypothesis of the per iodic  origination and decay of the wake behind a triple point. 
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ANALYSIS OF THE HYDRODYNAMIC INTERACTION BETWEEN 

CASCADES OF THIN PROFILES TAKING ACCOUNT OF VORTEX 

WAKE EVOLUTION 

Ro L .  K u l y a e v  UDC 532.582.2 

The papers  [1-5] a re  devoted to an invest igat ion of aspects  of the hydrodynamic  in terac t ion  of 
cascades  of prof i les  in a nonl inear  formulat ion:  it is shown exper imen ta l ly  in [1] and theo re t i -  
cally in [2] that the f ree  vor t ex  sheet  rup tures  upon meet ing a profile;  taking account of the evo-  
lution of vor tex  Wakes, the flows around two cascades  of solid prof i les  of inf ini tes imal  [3] and 
finite [4] density a r e  computed; r e su l t s  of an exper imenta l  invest igat ion of the dynamic reac t ions  
of the flow on two mutual ly moving cascades  of thin prof i les  are  p resen ted  in [5]. The i n t e r f e r -  
ence between two cascades  of thin prof i les  in an inviscid,  i ncompres s ib l e  fluid flow is examined 
in this paper ,  where  a modified method f r o m  [6] is used. 

w 1. Undetaehed flow around two cascades  of thin p rof i l es  by an inviscid incompress ib l e  fluid is cons idered  
in the plane of the x, y Car tes ian  coord ina tes .  The y axis is d i rected along the front  of the cascades .  The 
left  cascade  is  a ssumed  fixed, while the right cascade  moves  along the y axis at the veloci ty  u = const .  The flow 
outside the prof i les  and their  shed vor tex  wakes are  assumed potential ,  the cascade  spacings are identical ,  the 
prof i les  a re  r igid,  and the influence of the wake and prof i le  th icknesses  is  negligible.  

Under  the assumpt ions  made ,  the flow velocity V = (V x, Vy) sa t i s f i es  the equations 

the per iod ic i ty  condition 

div V = 0 ,  rot V = 0, (x, y) g~ L; (1.1) 

V ( x , u §  t)=V(x, y,t) 

and the following boundary conditions: 

nonpenetrat ion of the fluid through the prof i le  of the cascades  

(1.2) 

Novosibirsk .  Trans la ted  f rom Zhurnal  Pr ikladnoi  Mekhaniki i Tekhnicheskoi  F iz ik i ,  No. 4, pp. 61-65, 
Ju ly-August ,  1976. Original a r t ic le  submit ted July  8, 1975. 

Th& material is protected by copyright registered in the name o f  Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part 
o f  this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, 
microfilming, recording or otherwise, without written permission o f  the publisher. A copy o f  this arHcle is available from the publisher for $ 7.50. 

502 


